

Acoustic and Seismic Sensor Placement (ASSP) Application

Programming Interface (API) Version 1.0

by David Marlin and Shane Thomas

ARL-TR-4432 April 2008

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Army Research Laboratory
White Sands Missile Range, NM 88002- 5501

ARL-TR-4432 April 2008

Acoustic and Seismic Sensor Placement (ASSP) Application

Programming Interface (API) Version 1.0

David Marlin
Computational and Information Sciences Directorate, ARL

and

Shane Thomas

Physical Science Laboratory, New Mexico State University

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2008
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Acoustic and Seismic Sensor Placement (ASSP) Application Programming Interface (API)
Version 1.0

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

David Marlin (ARL) and Shane Thomas (PSL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Computational and Information Sciences Directorate
Battlefield Environment Division (ATTN: AMSRD-ARL-CI-ES)
White Sands Missile Range, NM 88002-5501

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-4432

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this report, an Acoustic and Seismic Sensor Placement (ASSP) application programming interface (API) for acoustic sensor placement is
described. The API is implemented in both C++ and Java, with functionality for the later provided through the former via the Java Native
Interface (JNI). This API is based on the Sensor Performance for Battlefield Environments (SPEBE) API, but the classes are not extensions of
the SPEBE API. Instead, they include SPEBE objects as encapsulated data, accessible only through the methods. This serves the dual purpose
of allowing a more natural interface dedicated to sensor placement, while at the same time protecting the user from inadvertent misuse of the
more general SPEBE API. The ASSP interface includes classes to define the environment, including atmospheric, elevation, and ground
characterization, define sensor locations and characteristics, compute the detection probability of these sensors for specified source type, and
manage the resulting data as both a regularly-spaced grid and as a set of detection-probability contours.
15. SUBJECT TERMS

Acoustic sensors, sensor placement, acoustic propagation, acoustic performance modeling, acoustic decision aid

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

David Marlin
a. REPORT

U
b. ABSTRACT

 U
c. THIS PAGE

U

17. LIMITATION
 OF

 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

44 19b. TELEPHONE NUMBER (Include area code)

(575) 678-1524
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. Z39.18

ii

Contents

List of Tables iv

Summary 1

1. Introduction 3
1.1 Four Steps of Detection-Probability Prediction ..3

1.2 Five Classes of ASSP..4

1.3 Miscellaneous..4

1.4 Some Examples ...5
1.4.1 Initialization and Shutdown...5
1.4.2 Environment Definition...5
1.4.3 Propagation Table Management..5
1.4.4 Sensor Definition...6
1.4.5 Detection Probability Calculations..6

2. Class List 6

3. Class Descriptions 7
3.1 ResultGrid Class..7

3.1.1 Constructor & Destructor Documentation ..8
3.1.2 Member Function Documentation...9

3.2 SPEBE_Environment Class ..11
3.2.1 Constructor & Destructor Documentation ..13
3.2.2 Member Function Documentation...13

3.3 SPEBE_PDCalculator Class..17
3.3.1 Constructor & Destructor Documentation ..18
3.3.2 Member Function Documentation...19

3.4 SPEBE_PropagationTable Class...20
Reusing Tables and/or File Prefixes ...22
3.4.1 Constructor & Destructor Documentation ..24
3.4.2 Member Function Documentation...25

3.5 SPEBE_SensorSet Class ...27
3.5.1 Constructor & Destructor Documentation ..28

iii

iv

3.5.2 Member Function Documentation...29

3.6 SPEBE_TargetSet Class..30
3.6.1 Constructor & Destructor Documentation ..32
3.6.2 Member Function Documentation...32

4. Acoustic Sensor Placement Global Definitions 34
4.1 Global Enumerated Types ...35

4.1.1 Enumeration Type Documentation ...35

4.2 Global Functions ...36
4.2.1 Function Documentation ...36

5. Conclusion 36

Acronyms 37

List of Tables

Table 1. Class list. ..7
Table 2. Public member functions ResultGrid class. ...8
Table 3. Public member functions for the SPEBE_Environment class.......................................12
Table 4. Static public member functions for the SPEBE_Environment class.............................12
Table 5. Public member functions for the SPEBE_PDCalculator class......................................18
Table 6. Public member functions for the SPEBE_PropagationTable class.23
Table 7. Public member functions for the SPEBE_SensorSet class. ...28
Table 8. Static public member functions for the SPEBE_SensorSet class.28
Table 9. Public member functions for the SPEBE_TargetSet class. ...31
Table 10. Static public member functions for the SPEBE_TargetSet class.31

Summary

The Sensor Performance Evaluator for Battlefield Environments (SPEBE) application
programming interface (API) provides an outstanding suite of computational tools for modeling
the performance of acoustic sensors in a wide range of operational environments and
development situations. This includes the development of acoustic sensor placement decision
aids to assist mission planners in determining the optimum distribution of sensors for a given
detection objective. Unfortunately, the use of the SPEBE API requires a detailed knowledge of
the SPEBE architecture and significant expertise in acoustic propagation, acoustic signatures and
sensors, and meteorology.

The purpose of the Acoustic and Seismic Sensor Placement (ASSP) API is to present the
programmer with a subset of SPEBE capabilities tailored to the specific needs of an operational
decision aid. The objectives of the API are to simplify the process of setting up and generating
required calculations while at the same time reducing the possibility of error resulting from
improper configuration and sequencing of SPEBE calculations. To accomplish both objectives,
the API encapsulates the SPEBE objects rather than extending the SPEBE classes. This allows
the ASSP API complete flexibility in its class design while simultaneously preventing the direct
manipulation of SPEBE methods and data.

The API is based on five classes centered on definition of the acoustic and seismic environment,
estimation of the effects of this environment on acoustic and seismic propagation, definition of
acoustic and seismic sensor configurations, prediction of acoustic and seismic detection
probabilities, and representation of the resulting data. These classes are described in detail in this
report.

1

INTENTIONALLY LEFT BLANK.

2

1. Introduction

The Acoustic and Seismic Sensor Placement (ASSP) Application Programmer Interface (API)
provides the tools to develop acoustic sensor placement decision aids*. It is built upon the Sensor
Performance Evaluator for Battlefield Environments (SPEBE) API1, tailored to the specific
needs of acoustic sensor placement planning. While the SPEBE API provides a general set of
classes to invoke all the acoustic propagation and sensor performance modeling capabilities of
SPEBE, ASSP provides a smaller set of classes, of reduced complexity, designed specifically to
support sensor placement planning. Thus, the user of the ASSP API can concentrate on the
development of the sensor placement decision aid without the need to master the full range of the
SPEBE API, which requires far more expertise in acoustics and meteorology.

The API is implemented in both C++ and Java, with the functionality of the Java implementation
provided through the C++ implementation via the Java Native Interface (JNI).

At the heart of sensor placement planning is the calculation of probability of detection (PD),
which is dependent upon the propagation environment, type and locations of sensors, and
acoustic and seismic signatures of sources and backgrounds. Thus, the API is set up to streamline
the description of the environment, sources, backgrounds, and sensors, to invoke PD
calculations, and to represent the resulting data as both regularly spaced grids and contours.

This is done via the five ASSP classes, which are not extensions of the SPEBE API classes, but
rather encapsulate them and provide the methods necessary to manage them internally. The five
classes are organized to facilitate the sensor placement tasks, and insulate the user from the more
general, and therefore complex, classes of the SPEBE API.

1.1 Four Steps of Detection-Probability Prediction

The overall process of sensor detection-probability prediction can be divided into four steps:

1. Definition of the propagation environment, including the following:

• coordinates, time zone, and terrain elevations of the region of interest

• predominant ground characterization of the region of interest

• predominant meteorological conditions in the region of interest

*It was originally developed to support the Networked Sensors for the Future Force (NSFF) Advanced Technology
Demonstration, hence the name SPEBE4NSFF.
1Marlin, D.; Thomas, S. Sensor Performance Evaluator for Battlefield Environments (SPEBE) C++ Application Programming
Interface (API) Version 1.0; ARL-TR-4363; U.S. Army Research Laboratory: White Sands Missile Range, NM, December 2007.

3

2. Estimation of acoustic and seismic propagation effects, depending on the environmental
characterization and the target and sensor heights (but not the specific type of target or
sensor)

3. Definition of the sensor configuration, including number, type, and location of a set of
sensors

4. Prediction of detection probabilities, depending on the following:

• the environment defined in step 1

• the propagation effects defined and generated in step 2

• the sensor set defined in step 3

• the specific type of target of interest (but not its location)

• the selection of active sensors within the sensor set

1.2 Five Classes of ASSP

ASSP includes five classes: four to perform the four steps defined above, and a fifth to
encapsulate the detection probability data generated by step 4. The data can be retrieved from the
fifth class either as a two-dimensional (2-D) grid or as a set of contours. The five classes (in
order of the steps) are as follows:

1. SPEBE_Environment

2. SPEBE_PropagationTable

3. SPEBE_SensorSet

4. SPEBE_PDCalculator

5. ResultGrid

Refer to the documentation in section 3 of each class for a more detailed description of the class
and its methods.

1.3 Miscellaneous

There are several enumerated types associated with the five classes. Refer to section 5.1 or
particular class documentation for details.

There are also a few dll housekeeping functions which must be performed, including
initialization and termination. Refer to section 5.2 for details.

4

Attention: Use of this library requires the definition of the ABFAHome environment variable,
which must point to the directory in which ASSP is installed.

Class constructors and methods that take filename arguments will throw char* exceptions if
ABFAHome isn’t defined or files aren’t found.

Each of the five classes had a destructor, which frees a number of internal arrays allocated within
the dll. It is important to delete all objects when they are no longer needed. Failure to adhere to
this practice may result in memory failure and crashes.

The source and sensor types described in section 5.1 can be easily expanded or modified.
Currently they are a minimal set used for the initial development of the API.

1.4 Some Examples

1.4.1 Initialization and Shutdown

Every session must begin with the call

 SPEBE_Initialize();

and should end with the call

 SPEBE_Shutdown();

1.4.2 Environment Definition

// instantiate a new SPEBE_Environment, and set up the domain,
// ground type, seismic type, meteorology
SPEBE_Environment* theEnvironment = new SPEBE_Environment();
theEnvironment->SetDomain(33.0265, 33.1265, -106.239, -106.139,
 "f:\\", 6);
theEnvironment->SetGroundType(Sand);
theEnvironment->SetSeismicType(Desert);
theEnvironment->SetMeteorology(temp, rh, windSpd, windDir, year, day,
time, cloudCover);

1.4.3 Propagation Table Management

// instantiate a new SPEBE_PropagationTable, and generate
// a propagation table for an UGS3 sensor and Tracked source
SPEBE_PropagationTable* thePropTable = new
 SPEBE_PropagationTable(theEnvironment,
 "d:\\spebe4nsff\\spebe4nsff_develop\\debug", "NSFF_Test");
thePropTable->GenerateTable(Human, Tracked);

5

1.4.4 Sensor Definition

// instantiate a SPEBE_SensorSet for two Human and one Acoustic
// sensors, and set their coordinates
SPEBE_SensorSet* theSensors = new SPEBE_SensorSet(3, Human);
theSensors->ChangeSensorType(1, Acoustic);
theSensors->SetSensorLocation(0, 33.045, -106.255);
theSensors->SetSensorLocation(1, 33.045, -106.260);
theSensors->SetSensorLocation(2, 33.046, -106.260);

1.4.5 Detection Probability Calculations

// instantiate a SPEBE_PDCalculator for the propagation tables
// and sensors defined above, for a Tracked target, in
// LightBattle background noise,
// activate all sensors, and calculate their detection probability
SPEBE_PDCalculator* thePDCalculator = new
 SPEBE_PDCalculator(thePropTable,
 theSensors, Tracked, LightBattle);
thePDCalculator->Activate(0);
thePDCalculator->Activate(1);
thePDCalculator->Activate(2);
ResultGrid* theResults3 = thePDCalculator->GetPD();

// deactivate one sensor and calculate the new detection probability
thePDCalculator->Deactivate(2);
ResultGrid* theResults2 = thePDCalculator->GetPD();

2. Class List

Table 1 shows the Acoustic Sensor Placement Decision Aid API Class List, which includes the
classes, structs, unions, and interfaces with brief descriptions.

6

Table 1. Class list.

Name Description

ResultGrid
Encapsulates 2-D gridded data returned by SPEBE calculations, such as
detection probability. Also generates contour plots of the encapsulated
data.

SPEBE_Environment

Describes the general propagation environment of the region-of-
interest, which encompasses the following:

• domain (SetDomain)
• coordinates of lower-left and upper-right corners of region-of-

interest
• time zone of lower-left corner
• terrain elevations of region-of-interest
• predominant ground type of region (SetGroundType, see also

SPEBE_GroundType)
• predominant seismological characteristics of region

(SetSeismicType, see also SPEBE_SeismicType)
• predominant meteorology of region (SetMeteorology, see also

TranslateCloudCover)

SPEBE_PDCalculator

Generates detection probabilities for a fixed
• environment (region and weather: SPEBE_Environment),
• background noise level (SPEBE_NoiseType),
• target type (SPEBE_TargetType), height, and direction, and
• set of sensors (SPEBE_SensorSet).

SPEBE_PropagationTable

Generates and manages the propagation tables for a given environment
(SPEBE_Environment). These tables are used by the
SPEBE_PDCalculator to calculate detection probabilities. If you want
to avoid errors leading to invalid results, make sure you read and
understand the documentation for this class.

SPEBE_SensorSet Manages a set of sensors chosen from SPEBE_SensorType.

SPEBE_TargetSet Manages a set of targets, or acoustic/seismic sources, chosen from
SPEBE_TargetType.

3. Class Descriptions

3.1 ResultGrid Class

The ResultGrid class encapsulates the 2-D gridded data returned by SPEBE sensor performance
calculations, such as detection probability. It also generates contour plots of the encapsulated
data to keep track of the computational grid coordinates, so that the data can be referenced to its
location within the computational grid for contour generation. See also PerformanceCalculator.

Table 2 provides the public member functions for the ResultGrid class.

7

Table 2. Public member functions ResultGrid class.

 Function Description

ResultGrid (ResultGrid *theArray)
Copy constructor.

~ResultGrid (void)
The destructor. Always delete ResultGrid objects when they are no longer needed.

ResultGrid (double *theData, int numRows, int numCols, CDomain *theDomain, const char
*arrayName)
Instantiate a new ResultGrid with data contained in a linear double* array.

void

GenerateContours (double contourValue)
Generate a set of contours for the encapsulated data, for the specified contourValue.

int

GetNumContours (void)
Returns the number of contours genereated by ResultGrid::GenerateContours.

int

GetContourLength (int contour)
Returns the length of a specified contour generated by ResultGrid::GenerateContours.

double *

GetContourLat (int contour)
Returns the latitudes of a specified contour generated by GenerateContours.

double *

GetContourNorthing (int contour)
Returns the northings of a specified contour generated by GenerateContours.

double *

GetContourLong (int contour)
Returns the longitudes of a specified contour generated by GenerateContours.

double *

GetContourEasting (int contour)
Returns the eastings of a specified contour generated by GenerateContours.

int

GetNumGridY (void)
Return the number of grid points in the Y (north-south) dimension.

int

GetNumGridX (void)
Return the number of grid points in the X (east-west) dimension.

double

GetGridXY (int xx, int yy)
Return the value of the specified grid point.

double

GetGridMax (void)
Return maximum value within the grid.

double

GetGridMin (void)
Return minimum value within the grid.

3.1.1 Constructor & Destructor Documentation

ResultGrid::ResultGrid (ResultGrid * theArray)

This function is a copy constructor.

Parameters:

• theArray - the ResultGrid to be copied

8

ResultGrid::ResultGrid (double * theData,
 int numRows,
 int numCols,
 CDomain * theDomain,
 const char * arrayName

)

This function instantiates a new ResultGrid with data contained in a linear double*array.
Note: This function assumes the data points are located on the computational grid defined in
theDomain. If they are not, the results are unpredictable.

Parameters:

• *array - the returned data to be incorporated into the ResultGrid

• *theDomain - the CDomain object associated the data returned by the m-file

• *arrayName - the name to be associated with the data array

3.1.2 Member Function Documentation

void ResultGrid::GenerateContours(double contourValue)

This function generates a set of contours for the encapsulated data for the specified
contourValue.

Parameters:

• contourValue - the contour value

double* ResultGrid::GetContourEasting(int contour)

This function returns the eastings of a specified contour generated by GenerateContours.

Parameters:

• contour - specifies the desired contour

Returns: An array of eastings for the points in the specified contour

double* ResultGrid::GetContourLat(int contour)

This function returns the latitudes of a specified contour generated by GenerateContours.

Parameters:

• contour - specifies the desired contour

Returns: An array of latitudes for the points in the specified contour

9

int ResultGrid::GetContourLength (int contour)

This function returns the length of a specified contour generated by
ResultGrid::GenerateContours.

Parameters:

• contour - specifies the desired contour

Returns: The number of points in the specified contour

double* ResultGrid::GetContourLong (int contour)

This function returns the longitudes of a specified contour generated by GenerateContours.

Parameters:

• contour - specifies the desired contour

Returns: An array of longitudes for the points in the specified contour

double* ResultGrid::GetContourNorthing(int contour)

This function returns the northings of a specified contour generated by GenerateContours.

Parameters:

• contour - specifies the desired contour

Returns: An array of northings for the points in the specified contour

double ResultGrid::GetGridMax(void)

This function returns the maximum value within the grid.

Returns: The maximum grid value

double ResultGrid::GetGridMin(void)

This function returns the minimum value within the grid.

Returns: The minimum grid value

10

double ResultGrid::GetGridXY (int xx,
 int yy

)

This function returns the value of the specified grid point.

Parameters:

• xx - X index of specified grid point

• yy - Y index of specified grid point

Returns: The value of the grid point with the specified indices

int ResultGrid::GetNumContours (void)

This function returns the number of contours generated by ResultGrid::GenerateContours.

Returns: The number of contours

int ResultGrid::GetNumGridX (void)

This function returns the number of grid points in the X (east-west) dimension.

Returns: The number of points in the X dimension

int ResultGrid::GetNumGridY (void)

This function returns the number of grid points in the Y (north-south) dimension.

Returns: The number of points in the Y dimension

3.2 SPEBE_Environment Class

The SPEBE_Environment class describes the general propagation environment of the region-
of-interest, which encompasses the following:

• Domain (SetDomain)

◦ coordinates of lower-left and upper-right corners of region-of-interest

◦ time zone of lower-left corner

◦ terrain elevations of region-of-interest

• Predominant ground type of region (SetGroundType, see also SPEBE_GroundType)

• Predominant seismological characteristics of region (SetSeismicType, see also
SPEBE_SeismicType)

• Predominant meteorology of region (SetMeteorology, see also TranslateCloudCover).

11

Modify the enums SPEBE_GroundType and SPEBE_SeismicType, and the private methods
GetGroundFileName and GetSeismicFileName, as necessary, to modify ground and seismic
types.

A list of the public member functions for SPEBE_Environment class is given in table 3 and a
list of the static member function for SPEBE_Environment class is given in table 4.

Table 3. Public member functions for the SPEBE_Environment class.

Function Description

SPEBE_Environment (void)
Create a default environment, using the default files located under the directory defined in the
ABFAHome environment variable.

SPEBE_Environment (const char *envPath, const char *envName)
Create environment saved from a previous SPEBE_Environment.

~SPEBE_Environment (void)
The destructor.

void

SaveEnvironment (const char *envPath, const char *envName)
Save environment to a file.

void

SetDomain (double lowerLeftLat, double upperRightLat, double lowerLeftLon, double
upperRightLon, const char *DTEDDirectory, int timeZone)
Define domain: region coordinates, DTED directory for elevations, and timezone.

void

SetDomain (double lowerLeftLat, double upperRightLat, double lowerLeftLon, double
upperRightLon, int timeZone)
Define domain: region coordinates and timezone, with flat earth elevation model.

void

SetGroundType (SPEBE_GroundType groundType)
Specify the predominant ground type.

void

SetSeismicType (SPEBE_SeismicType seismicType)
Specify the predominant seismological characteristics.

void

SetMeteorology (double temp, double relativeHumidity, double windSpeed, double windDirection,
int year, int dayOfYear, int timeOfDay, double cloudCover[3])
Specify the meteorological conditions for the domain.

Table 4. Static public member functions for the SPEBE_Environment class.

Function Description

void

TranslateCloudCover (double cloudCover[3], const char *observation)
Extract cloud cover from an observation string.

12

3.2.1 Constructor & Destructor Documentation

SPEBE_Environment::SPEBE_Environment(void)

This function creates a default environment, using the default files located under the directory
defined in the ABFAHome environment variable.

Warning: These files are located in the Defaults subdirectory and are read-only. They should
not be modified in any way.

SPEBE_Environment::SPEBE_Environment(const char * envPath,
 const char * envName

)

This function creates the environment saved from a previous SPEBE_Environment.

Parameters:

• envPath - the directory path in which the environment file is located; don’t include final
\ If NULL, the ABFAHome directory will be used.

• envName - the name of the environment file; do’'t include a file type

SPEBE_Environment::~SPEBE_Environment(void)

This function is the destructor.

Note: Always delete a SPEBE_Environment object when it is no longer needed.

3.2.2 Member Function Documentation

void SPEBE_Environment::SaveEnvironment(const char * envPath,
 const char * envName

)

This function saves environment to a file.

Parameters:

• envPath - the directory path in which the environment file is to be stored; don’t include
final \. If NULL, the ABFAHome directory will be used.

• envName - the name of the environment file; don’t include a file type

13

void SPEBE_Environment::SetDomain(double lowerLeftLat,
 double upperRightLat,
 double lowerLeftLon,
 double upperRightLon,
 int timeZone

)

This function defines domain: region coordinates and timezone with a flat earth elevation model.

Note: All coordinates are in signed decimal:

• + for east/north, - for west/south

• left of decimal represents degrees, right of decimal represents fraction of a degree

Parameters:

• lowerLeftLat - Latitude of the lower-left corner of the region-of-interest (in signed decimal)

• upperRightLat - Latitude of the upper-right corner of the region-of-interest (in signed
decimal)

• lowerLeftLon - Longitude of the lower-left corner of the region-of-interest (in signed
decimal)

• upperRightLon - Longitude of the upper-right corner of the region-of-interest (in signed
decimal)

• timeZone - the difference between local time of the lower-left corner and Greenwich Mean
Time (GMT)

14

void SPEBE_Environment::SetDomain(double lowerLeftLat,
 double upperRightLat,
 double lowerLeftLon,
 double upperRightLon,
 const char * DTEDDirectory,
 int timeZone

)

This function defines domain: region coordinates, Digital Terrain Elevation Data (DTED)
directory for elevations, and timezone.

Note: All coordinates are in signed decimal:

 • + for east/north, - for west/south

 • left of decimal represents degrees, right of decimal represents fraction of a degree

Parameters:

• lowerLeftLat - Latitude of the lower-left corner of the region-of-interest (in signed decimal)

• upperRightLat - Latitude of the upper-right corner of the region-of-interest (in signed
decimal)

• lowerLeftLon - Longitude of the lower-left corner of the region-of-interest (in signed
decimal)

• upperRightLon - Longitude of the upper-right corner of the region-of-interest (in signed
decimal)

• DTEDDirectory - a directory containing DTED data, including a file named DMED and a
DTED subdirectory. This can be a DTED CD or directory on hard drive, flash disk, etc.

• timeZone - the difference between local time of the lower-left corner and GMT

void SPEBE_Environment::SetGroundType (SPEBE_GroundType groundType)

This function specifies the predominant ground type.

Parameters:

• groundType - The ground type, chosen from SPEBE_GroundType

15

void SPEBE_Environment::SetMeteorology (double temp,
 double relativeHumidity,
 double windSpeed,
 double windDirection,
 int year,
 int dayOfYear,
 int timeOfDay,
 double cloudCover[3]

)

This function specifies the meteorological conditions for the domain.

Parameters:

• temp - surface temperature in degrees Celsius

• relativeHumidity - the surface relative humidity in percent

• windSpeed - the surface wind speed in meters per second

• windDirection - the surface wind direction in degrees (counterclockwise from east?)

• year - the full four digit Gregorian calendar year

• dayOfYear - the day of the year starting from 1 for January 1

• timeOfDay - the time of day in 24-h format starting at midnight = 0.

• cloudCover - a three-element array giving the fractional cloud cover at low, medium, and
high elevation. See TranslateCloudCover.

void SPEBE_Environment::SetSeismicType(SPEBE_SeismicType seismicType)

This function specifies the predominant seismological characteristics.

Parameters:

• seismicType - The seismic type, chosen from SPEBE_SeismicType

16

void SPEBE_Environment::TranslateCloudCover(double cloudCover[3],
 const char * observation

) [static]

This function extracts cloud cover from an observation string.

Parameters:

• observation - a National Weather Service local observation string

• cloudCover - a three-element array, allocated in the calling program, returning the
fractional cloud cover at low, medium, and high elevation.

3.3 SPEBE_PDCalculator Class

The SPEBE_PDCalculator class generates detection probabilities for a fixed

• environment (region and weather: SPEBE_Environment);

• background noise level (SPEBE_NoiseType);

• target type (SPEBE_TargetType), height, and direction; and

• set of sensors (SPEBE_SensorSet).

The SPEBE_PDCalculator allows individual sensors to be activated and deactivated, and
returns detection probabilities for the set of activated sensors, or for any specified sensor
regardless of its activation state. Note: All sensors are initially activated.

Attention: SPEBE_PDCalculator works on a snapshot of the constructor arguments, as does the
SPEBE_PropagationTable. Thus, any changes to the SPEBE_SensorSet, such as location of a
particular sensor, will require instantiation of a new SPEBE_PDCalculator. Likewise, any
changes to the environment require a new SPEBE_PropagationTable and in turn a new
SPEBE_PDCalculator.

The public member functions for the SPEBE_PDCalculator class are listed in table 5.

17

Table 5. Public member functions for the SPEBE_PDCalculator class.

Function Description

SPEBE_PDCalculator (SPEBE_PropagationTable *table, SPEBE_SensorSet *sensorSet,
SPEBE_TargetType targetType, SPEBE_NoiseType noiseType)
Constructs a PDCalculator for the specified SPEBE_PropagationTable, SPEBE_SensorSet,
SPEBE_TargetType, and SPEBE_NoiseType, using the default target height.

SPEBE_PDCalculator (SPEBE_PropagationTable *table, SPEBE_SensorSet *sensorSet,
SPEBE_TargetType targetType, double targetHeight, double targetDirection,
SPEBE_NoiseType noiseType)
Constructs a PDCalculator for the specified SPEBE_PropagationTable, SPEBE_SensorSet,
SPEBE_TargetType, and SPEBE_NoiseType, using a specified target height.

~SPEBE_PDCalculator (void)
The destructor.

ResultGrid *

GetPD (void)
Return the detection probability grid for the active sensors, as determined by Activate and
Deactivate.

ResultGrid *

GetPD (int rcvrIndex)
Return the detection probability grid for the active sensors, as determined by Activate and
Deactivate, and specified target height Returns the detection probability grid for the specified
sensor, regardless of active or inactive state.

void

Activate (int rcvrIndex)
Returns the detection probability grid for the specified sensor and target height, regardless of
active or inactive state. Activates the specifed sensor.

void

Deactivate (int rcvrIndex)
Deactivates the specifed sensor.

3.3.1 Constructor & Destructor Documentation

SPEBE_PDCalculator::SPEBE_PDCalculator(SPEBE_PropagationTable * table,
 SPEBE_SensorSet * sensorSet,
 SPEBE_TargetType targetType,
 SPEBE_NoiseType noiseType

)

This function constructs a PDCalculator for the specified SPEBE_PropagationTable,
SPEBE_SensorSet, SPEBE_TargetType, and SPEBE_NoiseType, using the default target
height.

Parameters:

• table - The SPEBE_PropagationTable describing the propagation environment and file
prefix for the propagation tables to be used in the detection probability calculations.

• sensorSet - The SPEBE_SensorSet describing the set of sensors for which detection
probability calculations we be performed.

• targetType - The target type, chosen from SPEBE_TargetType

• noiseType - The background noise type, chosen from SPEBE_NoiseType

18

SPEBE_PDCalculator::SPEBE_PDCalculator (SPEBE_PropagationTable * table,
 SPEBE_SensorSet * sensorSet,
 SPEBE_TargetType targetType,
 double targetHeight,
 double targetDirection,
 SPEBE_NoiseType noiseType

)

This function constructs a PDCalculator for the specified SPEBE_PropagationTable,
SPEBE_SensorSet, SPEBE_TargetType, and SPEBE_NoiseType, using a specified target
height.

Parameters:

• table - The SPEBE_PropagationTable describing the propagation environment and file
prefix for the propagation tables to be used in the detection probability calculations.

• sensorSet - The SPEBE_SensorSet describing the set of sensors for which detection
probability calculations we be performed.

• targetType - The target type, chosen from SPEBE_TargetType

• targetHeight - The target height, in meters

• noiseType - The background noise type, chosen from SPEBE_NoiseType

SPEBE_PDCalculator::~SPEBE_PDCalculator(void)

This function is the destructor.

Note: Always delete a SPEBE_PDCalculator object when it is no longer needed.

3.3.2 Member Function Documentation

void SPEBE_PDCalculator::Activate (int rcvrIndex)

This function returns the detection probability grid for the specified sensor and target height,
regardless of active or inactive state, and activates the specified sensor.

Parameters:

• rcvrIndex - the receiver to be activated; indexing starts at zero.

19

void SPEBE_PDCalculator::Deactivate(int rcvrIndex)

This function deactivates the specified sensor.

Parameters:

• rcvrIndex - the receiver to be deactivated; indexing starts at zero.

ResultGrid * SPEBE_PDCalculator::GetPD (int rcvrIndex)

This function returns the detection probability grid for the active sensors, as determined by
Activate and Deactivate, and specified target height returns the detection probability grid for the
specified sensor, regardless of active or inactive state.

Parameters:

• rcvrIndex - the requested receiver; indexing starts at zero.

Returns: A ResultGrid object containing the requested detection probability data

ResultGrid * SPEBE_PDCalculator::GetPD (void)

This function returns the detection probability grid for the active sensors, as determined by
Activate and Deactivate. NOTE: All sensors are initially deactivated.

Returns: A ResultGrid object containing the requested detection probability data

3.4 SPEBE_PropagationTable Class

The SPEBE_PropagationTable class generates and manages the propagation tables for a given
environment (SPEBE_Environment). These tables are used by the SPEBE_PDCalculator to
calculate detection probabilities. If you want to avoid errors leading to invalid results, make sure
you read and understand the documentation for this class.

In addition to generating the propagation tables for a given environment and specified target and
sensor types (SPEBE_TargetType, SPEBE_SensorType), SPEBE_PropagationTable saves
them under a unique filename in a specified path. If no path is given in the constructor, then the
path given by the environment variable ABFAHome will be used.

Two propagation models are available for the calculations: a simple but fast spherical spreading
model with ground impedance and a full-wave, split-step parabolic equation. The spherical
spreading will account for ground reflection and the spreading of the acoustic wavefront as it
expands away from the source, but it will ignore refractive effects of the atmosphere. While this
model is very fast, it may give poor results in many cases because the refraction effects are

20

generally significant. The parabolic equation will include all the effects of the spherical
spreading model along with refraction, thus giving much more accurate results. However, it
requires considerably more time to complete the calculations.

The spherical spreading model gives reasonable results for a source more than a few hundred
meters above the ground, because most of the refractive effects are close to the ground. For
sources closer to the ground, the parabolic equation will give much better results. To use the
parabolic equation below a specified height, call EnableHiFi(double height). This will
automatically invoke the spherical spreading above the specified height and the parabolic
equation below that height. To use the spherical spreading model exclusively, regardless of
height, call DisableHiFi(void).

In either case, for each table generated, a source and sensor height label will be appended to the
file prefix specified in the constructor, and the table will be saved in the file of that name, in the
directory specified in the constructor. Thus, a set of tables will be generated and stored in files,
depending on the environment and types of sources and sensors specified.

Only the source and sensor heights are important, so a new table may not be generated for each
call to GenerateTable, depending upon the heights of the specified source and sensor types and
the heights associated with any tables that may have already been generated.

You do not have to explicitly generate any propagation tables (but you do need to instantiate a
SPEBE_PropagationTable object). The SPEBE_PDCalculator will generate tables as needed.
However, you can generate them if you prefer, so that once you start making detection
probability calculations, you won't have any long delays as new tables are generated.

Note: SPEBE_PropagationTable uses a snapshot of the specified SPEBE_Environment. If any
changes are made to the environment after instantiation of the SPEBE_PropagationTable, they
will not be incorporated. Thus, a new SPEBE_PropagationTable must be instantiated for the
modified environment. The intent is that a given SPEBE_PropagationTable represents a given
environmental state, and different environmental states should be associated with different
filenames.

Attention: Propagation tables are permanently saved for reuse. If propagation table files with the
specified prefix, in the specified directory, already exist, they will be reused. This allows tables
generated in a previous session to be reused without recomputing, but also calls for careful use of
file prefix naming and table housekeeping. Be sure to read the warnings at the bottom of this
section.

21

Reusing Tables and/or File Prefixes

To reuse tables at a later session, use one of two options:

• First option:

1. Before terminating a session, save the SPEBE_PropagationTable (which includes the
associated environment) using SPEBE_PropagationTable::SaveEnvironment(void).

2. In the new session, generate a new SPEBE_PropagationTable using
SPEBE_PropagationTable::SPEBE_PropagationTable(char* tablePath, char*
tablePrefix) with the same tablePath and tablePrefix as was used in the previously
saved SPEBE_PropagationTable.

• Second option:

1. Before terminating the session, save the SPEBE_Environment used to generate the
SPEBE_PropagationTable, using SPEBE_Environment::SaveEnvironment(char*
envPath, char* envName) with any desired envPath and envName.

2. In the new session, generate a new SPEBE_Environment using
SPEBE_Environment::SPEBE_Environment(char* envPath, char* envName)
with the same envPath and envName used to save in the previous session.

3. Then, generate a new SPEBE_PropagationTable using
SPEBE_PropagationTable::SPEBE_PropagationTable(SPEBE_Environment*
theEnvironment, char* tablePath, char* tablePrefix) using the
SPEBE_Environment just generated, and the same tablePath and tablePrefix used by
the SPEBE_PropagationTable in the previous session.

Warning: The second option will give invalid results if changes were made to the
SPEBE_Environment after the SPEBE_PropagationTable was instantiated.

In general, if a SPEBE_PropagationTable is instantiated with a previously used tablePath and
tablePrefix, and a SPEBE_Environment that does not represent the environmental state of the
previously generated table files, the results will be invalid.

Thus, exercise caution when reusing previously generated tables, or when reusing an old
tablePath and tablePrefix to generate new files.

In particular, if a file directory and prefix are to be reused to generate new tables, then the old
tables must first be deleted. It is also advisable to delete old tables that are no longer needed.

The public member functions for the SPEBE_PropagationTable class are listed in table 6.

22

Table 6. Public member functions for the SPEBE_PropagationTable class.

Function Description

SPEBE_PropagationTable (SPEBE_Environment *environment, const char *tablePath,
const char *tablePrefix)
Construct a new SPEBE_PropagationTable for the specified environment, tablePath, and
tablePrefix.

SPEBE_PropagationTable (const char *tablePath, const char *tablePrefix)
Construct a new SPEBE_PropagationTable from a previously saved
SPEBE_Environment and SPEBE_PropagationTable using SaveEnvironment.

~SPEBE_PropagationTable (void)
The destructor.

void

SaveEnvironment (void)
Save the SPEBE_PropagationTable and associated SPEBE_Environment under the same
tablePrefix as the tables, for later reuse.

void

EnableHiFi (double height)
Enable the use of high-fidelity propagation modeling for near-ground sources.

void

DisableHiFi (void)
Disable the use of high-fidelity propagation modeling for near-ground sources.

bool

HiFi (double height)
Indicate whether high-fidelity propagation modeling will be used for specified height.

void

GenerateTable (SPEBE_SensorType sensorType, SPEBE_TargetType targetType)
Construct and save a table for the given sensor and target types, using the default target
height.

void

GenerateTable (SPEBE_SensorType sensorType, double targetHt)
Construct and save a table for the given sensor type and target height.

const char *

GetTableFileName (SPEBE_SensorType sensorType, SPEBE_TargetType targetType)
Get the full name of the propagation table file for the specified sensor and target type,
using the default target height. /note These are .mat files and are managed by the API
internally. Thus, their direct manipulation is not required.

const char *

GetTableFileName (SPEBE_SensorType sensorType, double targetHt)
Get the full name of the propagation table file for the specified sensor type and target
height. /note These are .mat files and are managed by the API internally. Thus, their direct
manipulation is not required.

23

3.4.1 Constructor & Destructor Documentation

SPEBE_PropagationTable::SPEBE_PropagationTable (SPEBE_Environment * environment,
 const char * tablePath,
 const char * tablePrefix

)

This function constructs a new SPEBE_PropagationTable for the specified environment,
tablePath, and tablePrefix.

Parameters:

• tablePath - the directory path in which the propagation tables will be placed; don’t include
final slash “\”

• tablePrefix - the file prefix to be used in naming the propagation tables; don’t include a file
type

SPEBE_PropagationTable::SPEBE_PropagationTable (const char * tablePath,
 const char * tablePrefix

)

This function constructs a new SPEBE_PropagationTable from a previously saved
SPEBE_Environment and SPEBE_PropagationTable using SaveEnvironment.

Parameters:

• tablePath - the directory path in which the environment and table files are located; don’t
include a final directory slash “\”

• tablePrefix - the file prefix of the previously saved SPEBE_PropagationTable; don’t
include a file type

SPEBE_PropagationTable::~SPEBE_PropagationTable(void)

This function is the destructor.

Note: Always delete a SPEBE_PropagationTable object when it is no longer needed.

24

3.4.2 Member Function Documentation

void SPEBE_PropagationTable::DisableHiFi (void)

This function disables the use of high-fidelity propagation modeling for near-ground sources.

Warning: This must be enable or disabled PRIOR to the generation of any propagation tables. If
it is changed after propagation tables have been generated, then the tables will not be
regenerated, i.e., the new value will be ignored.

void SPEBE_PropagationTable::EnableHiFi(double height)

This function enables the use of high-fidelity propagation modeling for near-ground sources.

Warning: This must be enable or disabled PRIOR to the generation of any propagation tables. If
it is changed after propagation tables have been generated, then the tables will not be
regenerated, i.e., the new value will be ignored.

Parameters:

• height - Specify the height below which the high-fidelity will be used.

void SPEBE_PropagationTable::GenerateTable(SPEBE_SensorType sensorType,
 double targetHt

)

This function constructs and saves a table for the given sensor type and target height. The table
will be saved in the directory specified in the constructor. The filename prefix will be prepended
to a coded height string to arrive at the final filename.

Warning: If the file already exists, it will not be generated again. This results in efficient use of
tables for calculations, but requires care in the use of file prefixes. See comments under the
description of the class.

Parameters:

• sensorType - The sensor type, chosen from SPEBE_SensorType

• targetHt - The target height

25

void SPEBE_PropagationTable::GenerateTable(SPEBE_SensorType sensorType,
 SPEBE_TargetType targetType

)

This function constructs and saves a table for the given sensor and target types, using the default
target height. The table will be saved in the directory specified in the constructor. The filename
prefix will be prepended to a coded height string to arrive at the final filename.

Warning: If the file already exists, it will not be generated again. This results in efficient use of
tables for calculations, but requires care in the use of file prefixes. See comments under the
description of the class.

Parameters:

• sensorType - The sensor type, chosen from SPEBE_SensorType

• targetType - The target type, chosen from SPEBE_TargetType

const char * SPEBE_PropagationTable::GetTableFileName (SPEBE_SensorType sensorType,
 double targetHt

)

This function gets the full name of the propagation table file for the specified sensor type and
target height. Note: These are .mat files and are managed by the API internally. Thus, their direct
manipulation is not required.

Parameters:

• sensorType - The sensor type, chosen from SPEBE_SensorType

• targetHt - The target height

const char * SPEBE_PropagationTable::GetTableFileName (SPEBE_SensorType sensorType,
 SPEBE_TargetType targetType

)

This function gets the full name of the propagation table file for the specified sensor and target
type, using the default target height. NOTE: These are .mat files and are managed by the API
internally. Thus, their direct manipulation is not required.

Parameters:

• sensorType - The sensor type, chosen from SPEBE_SensorType

• targetType - The target type, chosen from SPEBE_TargetType

26

void SPEBE_PropagationTable::SaveEnvironment (void)

This function saves the SPEBE_PropagationTable and associated SPEBE_Environment
under the same tablePrefix as the tables for later reuse.

Note: Individual propagation tables are saved automatically as they are generated. This method
saves the SPEBE_PropagationTable and associated SPEBE_Environment for reuse.

3.5 SPEBE_SensorSet Class

The SPEBE_SensorSet class manages a set of sensors chosen from SPEBE_SensorType. A
sensor set is instantiated with a specified number of sensors of identical type. Coordinates of
each sensor are then set individually. If any sensor is of a different type, it can be changed
individually using ChangeSensorType; the assumption is that in most cases there will be a
predominant type.

Note: Sensors cannot be added or deleted once the set is created; however, sensor types and
coordinates can be changed. Also, specific sensors can be activated and deactivated for detection
probability calculations (see SPEBE_PDCalculator).

Warning: If you change the type of any of the sensors, a new set of parameters will be set up for
that sensor, including the coordinates. Thus, the coordinates of each sensor must be set after the
type is specified.

The public member functions for SPEBE_SensorSet class are listed in table 7 and the static
public member functions for this class are listed in table 8.

27

Table 7. Public member functions for the SPEBE_SensorSet class.

Function Description

SPEBE_SensorSet (int numSensors, SPEBE_SensorType sensorType)
Instantiate a specfied number of specified sensor type.

SPEBE_SensorSet (SPEBE_SensorSet *sensorSet)
Copy constructor.

~SPEBE_SensorSet (void)
The destructor.

void

ChangeSensorType (int sensorNumber, SPEBE_SensorType sensorType)
Change the sensor type of the specified sensor. Indexing starts with zero.

SPEBE_SensorType

GetSensorType (int sensorNumber)
Indicate the sensor type of the specified sensor.

int

GetNumSensors (void)
Indicate the number of sensors.

void

SetSensorLocation (int sensorNumber, double lat, double lon)
Set the location of the specified sensor. Indexing starts with zero.

double

GetSensorLat (int sensorNumber)
Indicate the specified sensor latitude.

double

GetSensorLon (int sensorNumber)
Indicate the specified sensor longitude.

Table 8. Static public member functions for the SPEBE_SensorSet class.

Function Description
double

GetSensorHeight (SPEBE_SensorType sensorType)

Indicate the specified sensor height.

3.5.1 Constructor & Destructor Documentation

SPEBE_SensorSet::SPEBE_SensorSet(int numSensors,
 SPEBE_SensorType sensorType

)

This function instantiates a specified number of specified sensor type. Once instantiated,
particular sensor types can be changed using ChangeSensorType.

Parameters:

• numSensors - the number of sensors in the set.

• sensorType - The sensor type, chosen from SPEBE_SensorType

SPEBE_SensorSet::SPEBE_SensorSet(SPEBE_SensorSet * sensorSet)

This function is a copy constructor. Once instantiated, particular sensor types can be changed
using ChangeSensorType.

Parameters:

• sensorSet - the existing SPEBE_SensorSet to be copied.

28

SPEBE_SensorSet::~SPEBE_SensorSet(void)

This function is the destructor.

Parameters: none

Note: Always delete a SPEBE_SensorSet object when it is no longer needed.

3.5.2 Member Function Documentation

void SPEBE_SensorSet::ChangeSensorType(int sensorNumber,
 SPEBE_SensorType sensorType

)

This function changes the sensor type of the specified sensor. Indexing starts with zero.

Parameters:

• sensorNumber - the particular sensor within the set to be changed; indexing starts at zero.

• sensorType - The sensor type, chosen from SPEBE_SensorType

int SPEBE_SensorSet::GetNumSensors(void)

This function indicates the number of sensors.

Returns: the number of sensors

double SPEBE_SensorSet::GetSensorHeight(SPEBE_SensorType sensorType) [static]

This function indicates the specified sensor height.

Parameters:

• sensorNumber - the particular sensor within the set. Indexing starts at zero.

Returns: The specified sensor height

double SPEBE_SensorSet::GetSensorLat(int sensorNumber)

This function indicates the specified sensor latitude.

Parameters:

sensorNumber - the particular sensor within the set; indexing starts at zero.

Returns: The specified sensor latitude

29

double SPEBE_SensorSet::GetSensorLon(int sensorNumber)

This function indicates the specified sensor longitude.

Parameters:

• sensorNumber - the particular sensor within the set; indexing starts at zero.

Returns: The specified sensor longitude

SPEBE_SensorType SPEBE_SensorSet::GetSensorType(int sensorNumber)

This function indicates the sensor type of the specified sensor.

Parameters:

• sensorNumber - the particular sensor within the set to be changed; indexing starts at zero.

Returns: The specified sensor type

void SPEBE_SensorSet::SetSensorLocation(int sensorNumber,
 double lat,
 double lon

)

This function sets the location of the specified sensor. Indexing starts with zero. NOTE: This
must be called after ChangeSensorType if the sensor type is to be changed.

Parameters:

• sensorNumber - the particular sensor within the set to be changed; indexing starts at zero

• lat - the latitude of the sensor, in signed decimal

• lat - the longitude of the sensor, in signed decimal

3.6 SPEBE_TargetSet Class

The SPEBE_TargetSet class manages a set of targets, or acoustic/seismic sources, chosen from
SPEBE_TargetType. A target set is instantiated with a specified number of targets of identical
type. Coordinates of each target are then set individually. If any targets are of a different type,
they can be changed individually using ChangeTargetType; the assumption is that in most
cases there will be a predominant type.

Note: Targets cannot be added or deleted once the set is created; however, target types and
coordinates can be changed. Also, specific targets can be activated and deactivated for detection
probability calculations (see SPEBE_PDCalculator).

30

Warning: If you change the type of any of the targets, a new set of parameters will be set up for
that target, including the coordinates. Thus, the coordinates of each target must be set after the
type is specified.

The public member functions for the SPEBE_TargetSet Class are listed in table 9 and the static
public member function is listed in table 10.

Table 9. Public member functions for the SPEBE_TargetSet class.

Function Description

SPEBE_TargetSet (int numTargets, SPEBE_TargetType targetType)
Instantiate a specfied number of specified target type.

~SPEBE_TargetSet (void)
The destructor.

void

ChangeTargetType (int targetNumber, SPEBE_TargetType targetType)
Change the target type of the specified target. Indexing starts with zero.

SPEBE_TargetType

GetTargetType (int targetNumber)
Indicate the specified target type.

int

GetNumTargets (void)
Indicate the number of targets in the set.

void

SetTargetLocation (int targetNumber, double lat, double lon)
Set the location of the specified target. Indexing starts with zero.

void

SetTargetHeight (int targetNumber, double height)
Set the height of the specified target. Indexing starts with zero.

void

SetTargetDirection (int targetNumber, double dir)
Set the direction of the specified target. Indexing starts with zero.

double

GetTargetLat (int targetNumber)
Indicate the specified target latitude.

double

GetTargetLon (int targetNumber)
Indicate the specified target longitude.

Table 10. Static public member functions for the SPEBE_TargetSet class.

Function Description
double

GetTargetHeight (SPEBE_TargetType targetType)
Indicate the specified target height.

31

3.6.1 Constructor & Destructor Documentation

SPEBE_TargetSet::SPEBE_TargetSet(int numTargets,
 SPEBE_TargetType targetType

)

This function instantiates a specified number of specified target types. Once instantiated,
particular target types can be changed using ChangeTargetType.

Parameters:

• numTargets - the number of targets in the set.

• targetType - The target type, chosen from SPEBE_TargetType

SPEBE_TargetSet::~SPEBE_TargetSet(void)

This function is the destructor. NOTE: Always delete a SPEBE_TargetSet object when it is no
longer needed.

3.6.2 Member Function Documentation

void SPEBE_TargetSet::ChangeTargetType(int targetNumber,
 SPEBE_TargetType targetType

)

This function changes the target type of the specified target. Indexing starts with zero.

Parameters:

• targetNumber - the particular target within the set to be changed; indexing starts at zero.

• targetType - The target type, chosen from SPEBE_TargetType

int SPEBE_TargetSet::GetNumTargets(void)

This function indicates the number of targets in the set.

Returns: The number of targets

double SPEBE_TargetSet::GetTargetHeight(SPEBE_TargetType targetType) [static]

This function indicates the specified target height.

Parameters:

• sensorNumber - the particular target within the set; indexing starts at zero.

Returns: The specified target height, in meters above ground

32

double SPEBE_TargetSet::GetTargetLat (int targetNumber)

This function indicates the specified target latitude.

Parameters:

• sensorNumber - the particular target within the set; indexing starts at zero.

Returns: The specified target latitude

double SPEBE_TargetSet::GetTargetLon (int targetNumber)

This function indicates the specified target longitude.

Parameters:

• sensorNumber - the particular target within the set; indexing starts at zero.

Returns: The specified target longitude

SPEBE_TargetType SPEBE_TargetSet::GetTargetType (int targetNumber)

This function indicates the specified target type.

Parameters:

• sensorNumber - the particular target within the set; indexing starts at zero.

Returns: The specified target type

void SPEBE_TargetSet::SetTargetDirection(int targetNumber,
 double dir

)

This function sets the direction of the specified target. Indexing starts with zero. Note: This
refers to the direction the target is pointing, not the direction of the target’s ground track. In the
case of an aircraft flying with a crosswind component, the two will not be the same. This must be
called after ChangeTargetType if the target type is to be changed.

Parameters:

• targetNumber - the particular target within the set; indexing starts at zero.

• dir - the direction the target is pointing, in degrees

33

void SPEBE_TargetSet::SetTargetHeight(int targetNumber,
 double height

)

This function sets the height of the specified target. Indexing starts with zero. Note: This must be
called after ChangeTargetType if the target type is to be changed.

Parameters:

• targetNumber - the particular target within the set; indexing starts at zero.

• height - the height above ground of the sensor, in meters

void SPEBE_TargetSet::SetTargetLocation (int targetNumber,
 double lat,
 double lon

)

This function sets the location of the specified target. Indexing starts with zero. Note: This must
be called after ChangeTargetType if the target type is to be changed.

Parameters:

• targetNumber - the particular target within the set to be changed; indexing starts at zero.

• lat - the latitude of the sensor, in signed decimal

• lat - the longitude of the sensor, in signed decimal

4. Acoustic Sensor Placement Global Definitions

This section includes the definitions of several global enumerated types and functions.

The enumerated types are used by various class methods to specify predefined choices for
ground, seismic, sensor, target, and noise types. Each determines a set of parameters defined in
the data files that are included with the SPEBE and ASSP distribution.

The functions are associated with operation of the overall API rather than any specific class, and
are therefore defined independently of the classes.

34

35

4.1 Global Enumerated Types

4.1.1 Enumeration Type Documentation

e num SPEBE_GroundType

This lists the ground types for environmental characterization. The types are Urban, Suburban,
Asphalt, Gravel, Sand, Brush, Forest, ShortGrass, LongGrass, OpenWater, Ice, and Snow. See
also SPEBE_Environment.

e num SPEBE_NoiseType

This lists the background noise types for detection probability calculations. The types are Rural,
City, LightBattle, and IntenseBattle.

e num SPEBE_SeismicType

This lists the seismic types for environmental characterization. The types are Desert,
SoilOverBedrock, and SiltOverWaterTable.

e num SPEBE_SensorType

This lists the sensor types for detection probability calculations and propagation table generation.
The types are Human, Acoustic, and Seismic, where human refers to a person with International
Standards Organization (ISO) Standard good hearing, acoustic refers to a generic three-element
microphone array, and seismic refers to a generic geophone.

e num SPEBE_TargetType

This lists the target types for detection probability and propagation table generation. The types
are Tracked, WheeledHeavy, WheeledLight, HelicopterLow, HelicopterHigh, T2_UAS,
T3_UAS, and Personnel. T2_UAS refers to a Shadow surrogate Unmanned Arial System
(UAS), T3_UAS refers to a Hunter surrogate UAS, and Personnel refers to the seismic signature
of adult human footsteps.

4.2 Global Functions

4.2.1 Function Documentation

void SPEBE_Initialize (void)

This function shows the initialization to be called once at the beginning of a session.

Parameters: none

void SPEBE_Shutdown (void)

This is the function to be called once at the end of a session.

Parameters: none

5. Conclusion

This API was used by the U.S. Army Communications-Electronics Research, Development and
Engineering Center (CERDEC), Command and Control Directorate (C2D), to provide acoustic
sensor capability to graphical user interface (GUI)-based multimode sensor placement decision
aid development projects. Much of the architecture and interface design was based on
requirements provided by C2D, which in turn were derived from operational requirements for the
deployment of acoustic sensors and sensor decision aids. It was implemented by C2D developers
with general expertise in GUI and decision aid development but limited expertise in acoustic
sensors. The relative ease with which these developers were able to integrate ASSP into their
software demonstrates the success of the API as a tool to enable the development of acoustic
sensor placement decision aids with minimal acoustics expertise.

36

Acronyms

2-D two-dimensional

API Application Programmer Interface

C2D Command and Control Directorate

CERDEC Communications-Electronics Research, Development and Engineering Center

DTED Digital Terrain Elevation Data

GMT Greenwich Mean Time

GUI graphical user interface

ISO International Standards Organization

JNI Java Native Interface

NSFF Networked Sensors for the Future Force

PD probability of detection

SPEBE Sensor Performance Evaluator for Battlefield Environments

SPEBE4NSFF SPEBE for NSFF

UAS Unmanned Arial System

37

No. of
Copies Organization

1 (PDF ADMNSTR
ONLY) DEFNS TECHL INFO CTR
 DTIC OCP (ELECTRONIC COPY)
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

3 HCs US ARMY RSRCH LAB
 IMNE ALC IMS MAIL & RECORDS
 MGMT
 AMSRD ARL CI OK TL TECHL LIB

 AMSRD ARL CI OK T TECHL PUB
 2800 POWDER MILL ROAD

 ADELPHI MD 20783-1197

1 HC US ARMY RESEARCH LAB
 AMSRD CI OK TP TECHL LIB
 ATTN T LANDFRIED
 APG MD 21005

4 HCs US ARMY RESEARCH LAB
 AMSRD ARL CI EM
 L PARKER
 AMSRD ARL CI ES
 DR J NOBLE
 DR S COLLIER
 AMSRD ARL SE SE
 N SROUR

 2800 POWDER MILL ROAD
 ADELPHI MD 20783-1197

No. of
Copies Organization

1 HC US ARMY RESEARCH LAB
 AMSRD ARL CI EM
 DR D MARLIN
 WSMR NM 88002-5501

1 HC ERDC CRREL
 SIGNATURE PHYSICS BRANCH
 DR K WILSON
 72 LYME RD
 HANOVER NH 03755-1290

1 HC US ARMY ARDEC
 AMSTA AR FSF R
 J CHANG
 BLDG 95N
 PICATINNY ARSENAL NJ 07806-5000

1 HC RDECOM ARDEC
 AMSRD AAR AEP A
 J HEBERLEY
 BLDG 407
 PICATINNY ARSENAL NJ 07806-5000

Total: 1 PDF, 12 HCs

38

	Army Research Laboratory
	List of Tables
	Summary
	1. Introduction
	1.1 Four Steps of Detection-Probability Prediction
	1.2 Five Classes of ASSP
	1.3 Miscellaneous
	1.4 Some Examples
	1.4.2 Environment Definition

	2. Class List
	3. Class Descriptions
	3.1 ResultGrid Class
	3.1.2 Member Function Documentation

	3.2 SPEBE_Environment Class
	3.2.2 Member Function Documentation

	3.3 SPEBE_PDCalculator Class
	3.3.1 Constructor & Destructor Documentation
	3.3.2 Member Function Documentation

	3.4 SPEBE_PropagationTable Class
	3.4.1 Constructor & Destructor Documentation
	3.4.2 Member Function Documentation

	3.5 SPEBE_SensorSet Class
	3.5.1 Constructor & Destructor Documentation
	3.5.2 Member Function Documentation

	3.6 SPEBE_TargetSet Class
	3.6.1 Constructor & Destructor Documentation
	3.6.2 Member Function Documentation

	4. Acoustic Sensor Placement Global Definitions
	4.1 Global Enumerated Types
	4.1.1 Enumeration Type Documentation

	4.2 Global Functions
	4.2.1 Function Documentation

	5. Conclusion
	Acronyms

